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Three-dimensional MoS2/Graphene Aerogel
as Binder-free Electrode for Li-ion Battery
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Abstract

Hybrid MoS2/reduced graphene aerogels with rich micro-pore are fabricated through a hydrothermal method,
followed by freeze-drying and annealing treatment. The porous structure could act as an electrode directly, free of
binder and conductive agent, which promotes an improved electron transfer, and provides a 3D network for an
enhanced ion transport, thus leading to an increased capacity and stable long cycle stability performance. Notably,
the specific capacity of MoS2/reduced graphene aerogel is 1041 mA h g−1 at 100 mA g−1. Moreover, reversible
capacities of 667 mA h g−1 with 58.6% capacity retention are kept after 100 cycles. The outstanding performance is
beneficial from the synergistic effect of the MoS2 nanostructure and graphene conductive network, as well as the
binder-free design. These results provide a route to integrate transition-metal-dichalcogenides with graphene to
fabricate composites with rich micro-pores and a three-dimensional network for energy storage devices.
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Introduction
Nowadays, the rapid development of electric vehicles
and flexible electronics opens up an opportunity for the
development of energy storage devices in the industrial
and research communities [1, 2]. Among the various en-
ergy storage devices, lithium ion batteries (LIBs) are paid
more attention due to their outstanding energy storage
capability as well as long cycle life [3–5].
Recently, many researches have focused on high-per-

formance anode materials for LIBs. 2D transition
metal dichalcogenides (TMDs), with outstanding elec-
trochemical performance, have won much attention
and showed great potential as anode materials for LIBs
[6, 7]. Comparing with conventional metal oxides, the
metal sulfides with higher conductivity and larger inter-
layer spacing promote an improved electron transfer and
enhanced ion transport [8]. Among the metal sulfides,
molybdenum disulfide (MoS2) shows great advantages as
the anode of LIBs due to its unique layered structure and
high capacity (ca. 670mAh g−1). However, its structure is
prone to deteriorate during the charge/discharge process
due to volume change, leading to a poor cycling stability.

Numerous attempts have been conducted to enhance kin-
etic behaviors of MoS2 as LIBs anode. One method is to
synthesis nano-size structure, in order to shorten the dif-
fusion distance of lithium ions [9, 10]. Another method is
to incorporate carbon materials to improve the composite
conductivity and repress the volume expansion during
charge/discharge process [11–13]. Different carbon mate-
rials [14–20], including carbon nanotubes [18] and gra-
phene [19, 20], are used to integrate with MoS2 and it
proves to be in effect. Especially, graphene has drawn
much attention benefiting from its outstanding conductiv-
ity and high surface area. Recently, graphene has been
widely researched in many areas, such as conductive
switching [21], photoluminescence [22], chemical cleaning
[23], and gas sensing [24] as well as energy storage fields
[25]. For instance, Teng et al. prepared MoS2 nanosheets
on graphene sheets, and a capacity of 1077mAh g−1 at
100mA g−1 after 150 cycles was obtained [26]. Liu et al.
fabricated a composite of MoS2 and graphene [27], and
the reversible capacity of 1300–1400 mAh g−1 was ob-
tained. How to incorporate graphene with MoS2 to
obtain the high-capacity and stable anode material is
still an ongoing task [11].
Herein, a facile and low-cost approach is used to pre-

pare a hierarchical nanostructure of MoS2/reduced gra-
phene (MoS2/RGO) aerogel. With a solvothermal and
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freezing-drying process, the MoS2/RGO aerogel is fabri-
cated and directly acts as the binder-free anode. Such a
structure endows the MoS2/graphene aerogel with sev-
eral advantages as an anode material. First, the graphene
acts as a matrix to support the MoS2 nanostructures,
which is beneficial to preventing graphene sheets from
restacking. Second, the hierarchical nanostructure pro-
vides a good adhesion between graphene and MoS2,
which ensure a stable structure and thus guarantee a
long cycling stability. Third, the graphene with high
conductivity promotes an improved electron transfer
and acts as a basis to alleviate volume expansion of
MoS2 in the charge/discharge process. Fourth, such a
binder-free design shortens the ion diffusion distance,
leading to an enhanced ion transport. The reversible
capacity of the as-prepared binder-free MoS2/RGO
aerogel is up to 667 mA h g−1 at 100 mA g−1 after 100
cycles. This method provides a route to fabricate the
high-performance lithium-ion anode material.

Materials and Methods
Synthesis of MoS2/RGO Aerogels
All reagents were of analytical grade. A modified Hum-
mers’ method was used to prepare graphene oxide (GO)
for further use [28]. The MoS2/RGO aerogels were pre-
pared with a one-step hydrothermal method. In detail,
60 mg of (NH4)2MoS4 were dissolved in 10mL of N,
N-dimethylformamide (DMF) solvent. Five milliliters of
GO aqueous (5mgmL−1) were added, and a homoge-
neous solution was obtained under sonication for several
hours. The solution was put to a Teflon-lined autoclave
and sealed. Finally, it was heated in the oven at 200°C for
12 h. MoS2/RGO hydrogels were obtained through wash-
ing with ethanol and D.I. water. Through freeze-drying
and annealing in 700°C for 2 h, the final MoS2/RGO aero-
gels were obtained. As a comparison, the MoS2 powder
was prepared with the same steps except adding GO.

Characterization
A thin piece of MoS2/RGO film which was cut from the
MoS2/RGO aerogels was used to carry out further
characterization. Field mission scanning electron micros-
copy (FESEM, JEOL JSM-6700F) and field-emission trans-
mission electron microscopy (FETEM, FEI, Tecnai G2
F30) were used to characterize the obtained samples. XRD
analysis (PANalytical PW3040/60) with Cu Kα radiation
(λ = 1.5406 Å) from 10° to 80° was used to confirm the
substance of the MoS2/RGO film and MoS2 powder.

Electrochemical Measurements
The MoS2/RGO film was directly used as a binder-free
anode, without any binder and conductive agent. It was
assembled into a coin-type half-cell in a glove box, with
a lithium foil acting as counter electrode and Celgard

2400 polymer as separator. The electrolyte consisted of
1M LiPF6 in ethylene carbonate (EC) and diethyl car-
bonate (DEC). After assembly, the cell was aged 24 h in
the glove box for further measurements. The galvanosta-
tic charge/discharge (GCD) measurements were carried
out with a battery measurement system (Land, China),
and cyclic voltammetry (CV) testings were conducted
with Autolab workstation (PGSTAT-302N). The test-
ing was conducted in the potential range of 0.01–3.0 V
(vs Li1/Li). Electrochemical impedance spectra (EIS)
experiments were carried out with 10 mV amplitude in
the frequency from 100 kHz to 0.01 Hz.

Results and Discussion
The MoS2/RGO aerogels were fabricated with a hydro-
thermal method, freeze-drying and heat treatment. Figure 1
displayed the preparation process of the MoS2/RGO elec-
trode. Detailed methods were described on the Materials
and methods. As shown in Additional file 1: Figure S1
and Additional file 2: Figure S2, the obtained MoS2/
RGO aerogel could keep integrate structure. The ex-
cellent mechanical behavior was beneficial from the
rich porosity of the whole structure and the intercon-
nection of graphene layers, showing great potential as
a binder-free electrode.
Figure 2 presented the morphology of MoS2/rGO aero-

gel. A porous structure with wrinkled graphene layers in-
terconnected with each other was observed (Fig. 2a), where
MoS2 nanostructures covered the whole graphene layers.
The microstructure of MoS2/RGO aerogels was further
confirmed with TEM (Additional file 3: Figure S3). As dis-
played in Fig. 2c and d, the MoS2 nanostructures were dis-
tributed on the graphene even after long-time
ultrasonication, illustrating the strong interaction of MoS2
on graphene. The high-resolution TEM image was dis-
played in Fig. 2f. The graphene layers were covered with
MoS2 nanostructures, where lattice spacings of 0.61 and
0.27 nm were observed, which were responsible for (002)
and (100) planes of MoS2 [29]. The SAED pattern (inset of
Fig. 2f) presented several diffraction rings, which was
well corresponding to MoS2 planes [30]. These results
illustrated that MoS2 nanostructures on graphene
layer exhibited a good crystallinity. The elemental dis-
tribution of the aerogel was detected (Fig. 2g–j) where
Mo, S, and C elements were almost overlapped with
the whole structure, suggesting the successful fabrica-
tion of the composite.
X-ray diffraction (XRD) experiments were also carried

out. As shown in Fig. 3a, the XRD patterns of the MoS2
powder could be responsible for hexagonal 2H–MoS2
(JCPDS 37-1492). The strong reflection peak at 2θ = 14.2o

belonged to the (002) plane, with a d-spacing of 0.62 nm.
MoS2/RGO composite showed the similar crystalline
structure of pure MoS2, indicating a layered structure.
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Comparing with the MoS2 samples, an obvious peak in
26.3° was observed in the MoS2/RGO samples, which
could be the (002) diffraction peak of graphene, revealing
the graphene substance in the composites [31]. It was
worth pointing out that the obvious peak at 14.4°, 32.7° and

58.3° were ascribed to the (002), (100) and (110) diffraction
peak of MoS2, which was consistent with the previous
SAED pattern results. Notably, the MoS2 (002) reflection
peak, which indicated a stacked nature of layered MoS2,
was weakened for the MoS2/RGO composite, suggesting

Fig. 1 Schematic of fabrication of hybrid nanostructure of MoS2/RGO

Fig. 2 a, b SEM images and c, d, e, f TEM and HRTEM images of the MoS2/RGO sample. g–j TEM-EDX mapping of Mo, S, and C elements. The
inset in f is the corresponding SAED pattern
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the formation of a few-layer MoS2 structure [26, 32]. The
peaks of graphene were more obvious than the MoS2,
further confirming that the MoS2 was wrapped by
graphene layer in the MoS2/RGO aerogels [26, 32].
To further confirm the nature of MoS2 nanostructure

and graphene layer, Raman spectroscopy measurements
were also carried out [33–35]. As shown in Fig. 3b, the
MoS2/RGO aerogel showed the E2g and A1g peaks of
MoS2 at the frequencies of 380.2 and 403.6 cm−1 [18, 36].
Notably, it had been reported that the single-layer
MoS2 nanostructure with different fabrication method
would display an A1g peak at 402–404 cm−1 [37–39],
further identifying the few layer of MoS2 crystals in
the MoS2/RGO aerogel. Besides, the peaks at 1354.3 cm−1

and 1591.6 cm−1 were observed in Fig. 3b, which were
characteristic peaks of the D- and G-bands of graphene
[40–42]. The intensity ratio ID/IG was usually associ-
ated with the graphene defects [35]. The value was cal-
culated to be 1.08, indicating the reduced graphene
with some defects [34].
To demonstrate the performance of MoS2/RGO elec-

trode, CV measurements at a scan rate of 0.5 mVs−1

were carried out. Figure 4a showed the first three CV
curves of MoS2/RGO composite. A broad shoulder peak
was observed at 0.95 V when there were reduction peaks at
0.65 V in the first cathodic sweep of the MoS2/RGO elec-
trode. The peak at 0.95 V was related with Li+ intercalation
into MoS2 interlayer space to form LixMoS2, with a phase
transformation process to become 1T(octahedral) structure
of LixMoS2 from 2H (trigonal prismatic) [43, 44]. The
other peak at 0.65 V was accompanied with the process to
form Li2S and metallic Mo from LixMoS2 [45–47]. In the
following discharge scans, there were reduction peaks lo-
cated at 1.80 V and 1.05 V, indicating a different reaction
process. One pronounced peak at 2.34 V was observed
for the MoS2/RGO electrode in the reverse anodic
scans, indicating the formation of sulfur [43]. It could
be inferred that sulfur, Mo, and few MoS2 were formed
after the first cycle and they were kept the same in

subsequent cycles [36, 48–50]. In addition, the dis-
charge curves were identical except for the first one, in-
dicating the electrochemical stability for the MoS2/
RGO composite. The first three GCD curves of the
MoS2/RGO and MoS2 electrodes were shown in Fig. 4b
and c. In the first discharge cycle of the MoS2 elec-
trode, two potential plateaus were observed at 1.05 V
and 0.65 V (Fig. 4b). The 1.05 V plateau was accompan-
ied with the process of forming LixMoS2, and the plateau
at 0.65 V was related with the reaction of forming Mo par-
ticles from MoS2. A slope potential curve was observed
below 0.52 V in the first discharge cycles, meaning the ap-
pearance of gel-like polymeric layer due to the degrad-
ation of electrolyte [51–53]. The MoS2 electrode showed
plateaus at 2.0, 1.20 and 0.45 V in the following discharge
curves. In the charge process, an obvious plateau at 2.35 V
was observed for the MoS2 electrode. For the MoS2/RGO
electrode (Fig. 4c), there was no obvious potential plateau
during the first discharge cycle, except for a week plateau
at 1.1–0.6 V, which was mainly ascribed to the overlapping
lithium process in MoS2 and RGO [54]. MoS2/RGO elec-
trode displayed a plateau at 1.95 V in the following dis-
charge cycles, in agreement with the CV results. During
the charge cycles, the MoS2/RGO electrode showed a
plateau at 2.2 V. Figure 4c showed the discharge and
charge capacity of MoS2/RGO and MoS2 electrode. MoS2/
RGO electrode delivered 2215mAh g−1 discharge capacity
in the first discharge cycle, with a reversible charge cap-
acity of 1202mAh g−1. The corresponding values for the
MoS2 were 671.1mAh g−1 and 680.5mAh g−1, respect-
ively. The irreversible processes in the first cycle, such as
decomposition of electrolyte and the formation of SEI
film, lead to irreversibility [55, 56].
The rate performances of MoS2/RGO electrode and

MoS2 electrodes were shown in Fig. 4d. Comparing
with single MoS2 electrodes, MoS2/RGO electrodes de-
livered higher capacities. A capacity of 1041 mAh g−1 at
100 mA g−1 was kept after 50 discharge/charge cycles
for the MoS2/RGO electrode, indicating a good

Fig. 3 a XRD patterns of MoS2/RGO and MoS2 samples. b Raman spectra of the MoS2/RGO and MoS2
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electrochemical reversibility as well as a long cycle sta-
bility. By comparison, the MoS2 electrode only kept 512
mAh g−1 capacity at 100mA g−1 after 50 cycles. Moreover,
the specific capacity of the MoS2 electrode decreased a lot
when the current decreased from 2000mA g−1 to100mA
g−1. The cycling results conducted at 100mA g−1 were
shown in Fig. 4e. The MoS2 electrode showed a poor cyc-
ling performance. There was nearly no decrease in its ini-
tial 20 cycles. However, the reversible (charge) capacity
decreased from 892mAh g−1 to 110mAh g−1 after 100 cy-
cles, with only 12.3% capacity retention. On the contrary,
the MoS2/RGO electrodes displayed an improved cyclic
stability. A reversible capacity of 667mAh g−1, with a
58.6% capacity retention was obtained after 100 cycles.
The rate performances and cycling stability of pure
RGO electrode were also displayed in Additional file 4:

Figure S4. The RGO electrode delivered a reversible
charge capacity of 297.8 mAh g−1 at 100 mA g−1. When
the current density reversed from 2000 mA g−1 to100
mA g−1, the specific capacity of 202.2 mAh g−1 was
kept for the RGO electrode. Table 1 showed a com-
parison of the capacity performance about the
binder-free MoS2/RGO and other materials based on
MoS2/rGO listed in the literature [57–63]. It could be
seen that the binder-free MoS2/RGO electrode
showed high capacity compared with other porous
MoS2/RGO composites ever reported. These results
illustrated the successful introduction of RGO, and
the important role it played in the delithium-lithium
process [57]. Firstly, the graphene layer with highly porous
architecture provided rich active sites for the MoS2 nano-
structure, which was beneficial to preventing aggregation of

Fig. 4 The first three cyclic voltammograms of MoS2/RGO aerogel at a scan rate of 0.5 mV s-1 (a). Galvanostatic charge and discharge curves of
MoS2/RGO aerogel (b) and MoS2 (c) electrodes at a current density of 100mA g-1. d Rate performances of MoS2/RGO aerogel and MoS2 electrodes
at different current densities. e Cycling performance of MoS2/RGO aerogel and MoS2 electrodes at a constant current density of 100mA g-1
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MoS2. Secondly, the graphene with good conductivity re-
duced transfer resistance and promoted electron transmis-
sion and ion transport, leading to an improved rate
capability. Thirdly, the RGO aerogel with multi-scale por-
ous structure acted as an elastic buffer layer, which effect-
ively restrained the volume expansion during the
delithium-lithium process, and thus lead a better cycling
stability.
Electrochemical impedance spectra (EIS) measure-

ments were also conducted for the samples. Figure 5a
showed the Nyquist plots of MoS2/RGO and MoS2 elec-
trodes after 100 discharge-charge cycles at 100 mA g−1.
The first semicircle represented lithium ion migration
resistance through the SEI films (R1), while the second
semicircle stood for the resistance of charge transport
(Rct). R2 was related with the resistance of electrolyte

[26]. ZView software was used to fit the curves of MoS2/
RGO and MoS2 electrodes. The fitted values were listed
in the Fig. 5b. From the table, the Rct of the MoS2/RGO
electrode (10.74Ω) was smaller than MoS2 (44.07Ω),
indicating that rGO could bring an improved charge
transfer process during discharge-charge actions and
thus show a good rate capability.
To investigate the impact of repeated charge/dis-

charge processes on the as-prepared samples, FESEM
were conducted on the samples after 100 cycles at
100 mA g−1 (Additional file 1: Figure S1). MoS2/ RGO
electrode kept a well structure without any cracks.
The cross-sectional FESEM pictures in Additional file 1:
Figure S1c and d showed the high-compressible gra-
phene layer where nanoparticles were distributed. On
the contrary, severe cracks were observed on the pris-
tine MoS2 electrode in Additional file 1: Figure S1e
and f. It was mainly because the volume expansion of
active material during cycling, thus leading to parti-
cles aggregation. The above results illustrated the im-
portant role of graphene layer in inhibiting the
volume expansion in the cycling process (Additional
file 5: Figure S5).

Conclusion
In summary, hybrid MoS2/RGO aerogels with rich mi-
cropores have been fabricated. The prepared aerogels
are used as electrodes without any binder and conduct-
ing agent. Such a nanostructure design with abundant
micro-pores is not only beneficial to providing 3D net-
work for enhanced electron transfer, but also can
shorten the transport distance, thus leading to an im-
proved electrochemical rate and stable performance as
the anode electrodes for LIBs. MoS2/RGO aerogel
delivers specific capacities of 1041mA h g−1 at 100 mA
g−1, which is ascribed to the synergistic effect of MoS2
nanostructure and conductive graphene, as well as the
binder-free design with abundant micro-pores. The
study offers useful insights for realizing high-
performance anode electrodes for LIBs with high cap-
acity and long cycle stability.

Table 1 Comparison of the capacity of MoS2-graphene composites materials for Li-ion Battery

Material Method Current density Capacity Reference

MoS2/Graphene heterostructure Hydrothermal 100 mA g–1 786 mAh g–1 1 [58]

MoS2-rGO composites Microwave annealing 100mA g–1 908 mA h g–1 2 [59]

MoS2-RGO composites Supercritical methanol route 50 mA g–1 896 mA h g–1 3 [60]

Layer-by-layer MoS2/rGO hybrids Intercalation exfoliation 100mA g–1 940 mA h g–1 4 [61]

MoS2-graphene hybrids High temperature heat-treatment 100 mA g–1 800 mAh g–1 5 [62]

MoS2-graphene hybrid nanosheets Hydrothermal 100 mA g–1 902 mA h g–1 6 [63]

Binder-free MoS2/rGO hybrids Hydrothermal 100 mA g−1 1041mAh g−1 This work

Fig. 5 a Nyquist plots of MoS2/RGO and MoS2 electrodes at fully
charged state after 100 cycles at 100 mA g−1, and b values of R1, R2,
and Rct obtained by fitting data according to the equivalent circuit
model presented in a
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Additional files

Additional file 1: Figure S1. Mechanical performance of the MoS2/RGO
aerogel under the finger compression. (JPG 70 kb)

Additional file 2: Figure S2. Mechanical performance of the MoS2/RGO
aerogel before compression (a), under compression (b), and after
compression (c). (PNG 2203 kb)

Additional file 3: Figure S3. (a) TEM picture of the MoS2/RGO sample.
(b) TEM-EDS mapping of Mo, S, C elements. (c) EDX spectra of the MoS2/
RGO sample. (JPG 304 kb)

Additional file 4: Figure S4. (a) Rate performances of RGO aerogel
electrodes at different current densities. (b) Cycling performance of RGO
electrodes at a constant current density of 100 mA g−1. (JPG 114 kb)

Additional file 5: Figure S5. FESEM images of (a, b) MoS2/RGO
electrode, (c, d) cross-sectional images of MoS2/RGO and SEM images of
(e, f) bare MoS2 electrode after 100 cycles performed with a current
density of 100 mA g−1. (JPG 1649 kb)
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